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Abstract

Over 3000 fully resolved numerical simulations have been performed of axisymmetric liquid drops in a
uniform gaseous stream. By applying a body force, the drops were held at a fixed velocity relative to the gas
in order to determine their quasi-steady deformation response. The solutions were obtained using a new
two-fluid spectral/hp finite element method which, as determined by validation tests, is accurate to within
1% for the conditions studied. Liquid-to-gas density ratios between 5 and 500, viscosity ratios between 5
and 15, Weber numbers between 0.1 and 50, and Ohnesorge numbers between 10�4 and 10 were studied,
enabling us to better understand the droplet behavior. Three distinct drop shapes (prolate, oblate, and
dimpled) were observed, and the conditions that cause the appearance of these shapes were determined.
This allowed a correlation to be developed for predicting the drop shape as a function of the dimensionless
parameters governing the system. In addition, a simple criterion predicting the onset of a three-dimensional
instability associated with a tumbling motion of the drops was determined. In investigating the drag force
on the drops, we found that the current correlations for estimating the effect of internal circulation on the
drag for spherical drops were inaccurate and therefore proposed a new correlation. Using this and the
deformation correlation, we created a drag model for deforming liquid drops. This model predicts
the correct trends in all cases and is usually within 5% of the numerical results. Near break-up, the error
becomes larger due to the large deformations in drop shape.
� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Most methods for modeling a liquid spray require information on the behavior of an individual
liquid drop in a gaseous flow. This typically includes the drag force on the drop, the drop�s
evaporation rate, a drop merging model for collisions, and a drop break-up model. Simplified
models for predicting these phenomena have been developed through analytic, experimental, and
numerical studies of individual liquid drops. Because of the complex behavior of liquid drops
however, there are still many effects which are neglected in the models. One such effect is the
deformation of the drop; most models assume a spherical shape. In this paper, we report the
results of numerical simulations of a non-evaporating, isolated, liquid drop to quantify the de-
formation response of a drop. We also examine the drag force on the drop and propose an im-
proved model for drag by incorporating the effects of both deformation and internal circulation.
Drop behavior is examined in a uniform approach flow. This is a canonical problem for sprays

because in many applications the drops are smaller than the flow scales and the flow appears
uniform to the drop. Experimental data for this flow has been obtained predominantly from drop-
tower and shock-tube experiments (see Hsiang and Faeth, 1992) and has been used to develop and
validate the current drop models. However, it is difficult to systematically explore the entire pa-
rameter space relevant to sprays using either type of experiment. By performing numerical simu-
lations, we can extend the experimental work by obtaining precise information on both the drop
shape and the drag for a wide range of conditions. This enables us to provide new insights and
examine conditions that are difficult to study experimentally.
Another difficulty in studying drops is their extreme sensitivity to surface contaminants (Clift

et al., 1978). Most systems are, to some degree, affected by surface contaminants. Because it is
often difficult or impossible to determine the degree/nature of the contamination, we examine
uncontaminated drops to bound this limit of drop behavior. Haywood et al. (1994) have pos-
tulated that the main effect of contaminants is to reduce the magnitude of the circulation velocity
in the interior of the drop. If this is the case, the results we obtain with ‘‘small’’ liquid velocities are
relevant to contaminated drops. We have performed some preliminary simulations with con-
taminants to examine these effects. These can be found in Helenbrook and Edwards (2000).
The most relevant previous numerical studies of drops are those by Dandy and Leal (1989) and

by Haywood et al. (1994). These studies examined axisymmetric falling drops and categorized the
drop shapes, drag response, and flow fields at various conditions. This work extends those efforts
including more than 3000 simulations over a range of practically relevant conditions. The ability
to perform this study is due to a spectral/hp finite element algorithm we have developed for
simulating two-phase flows which is both accurate and efficient for obtaining steady-state drop
solutions. This algorithm is described and validated in Helenbrook (2001).
The paper begins with a formulation of the problem and a discussion of the governing non-

dimensional parameters, the physically relevant range of these parameters, and the accuracy of the
approximations made in the formulation over this range. This is followed by a summary of the
numerical method and the validation results presented in Helenbrook (2001). The remaining
sections examine the results. First, we present the most frequently observed drop shapes and give
a brief explanation of the mechanisms causing these shapes. This is followed by a more detailed
discussion of the parameters controlling the transition between the different shapes and the de-
velopment of an algebraic correlation for predicting the drop shape. The remaining two sections
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focus on the drag force. The first analyzes the effect of internal circulation on the drag for
spherical drops, and the second examines the effect of drop deformation on the drag. In these
sections, an algebraic correlation is developed for predicting the drag on a deformed liquid drop.

2. Formulation

The physical problem is that of an axisymmetric liquid drop driven through a quiescent gas by a
body force such as gravity. We study the deformation and drag of the drop at its terminal velocity,
U. This problem is relevant not only to systems with gravity, but also to spray systems in which
the drop size is small relative to the flow scales and the injected drop�s deformation rate is fast
relative to its velocity decay rate. The conditions under which the latter of these two requirements
is satisfied will be analyzed after we introduce the non-dimensional parameters governing the
problem.
Assuming that the drop velocities are small relative to the speed of sound, we approximate both

the gas and the liquid as incompressible. We also neglect temperature gradients and evaporation.
This is appropriate for saturated isothermal systems and possibly for vaporizing systems when the
evaporation velocity is small relative to the gas velocity, and temperature changes across drop
length scales are small. Neglecting temperature gradients is consistent with assuming that the drop
is small relative to the flow scales, but there can still be strong gradients if the ambient gas
temperature is much larger than the boiling point of the drop.
We can model the above conditions as two fluids with constant densities, qL and qG, and

viscosities, lL and lG, separated by an interface with constant surface tension, r. The subscripts
denote either liquid or gas. Both fluids must satisfy the axisymmetric form of the incompressible
Navier–Stokes equations. At the interface, we enforce the conditions that the mass flux through
the interface is zero and that the jump in stress across the interface is balanced by surface tension.
For the mathematical form of the governing equations and the interface conditions, see Helen-
brook (2001).

3. Physical parameters

In the above formulation, there are four independent dimensionless parameters. We choose the
liquid-to-gas density ratio qL=qG, the liquid-to-gas dynamic viscosity ratio lL=lG, the Weber
number We ¼ qGU

2d=r, and the Ohnesorge number, Oh ¼ lL=
ffiffiffiffiffiffiffiffiffiffiffi
qLrd

p
to describe the problem, (d

is the volume-equivalent diameter of the drop). The body force on the drop does not appear in
any of the independent parameters because we have assumed the drop is at its terminal velocity.
At the terminal velocity, the body force and the drop velocity are not independent.
For a given pair of fluids (such as hexane/air), the liquid-to-gas density ratio varies mainly with

the gas density which is a function of the ambient pressure and temperature. For most spray
systems, the pressures are between atmospheric and the critical pressure of the liquid, and the tem-
peratures are between atmospheric temperature and 2500 K, a typical adiabatic flame tempera-
ture. To investigate the effect of density ratio over this range of conditions, we study density ratios
of 5, 50, and 500. The liquid-to-gas viscosity ratio is primarily a function of the temperature. If we
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assume that the gas temperature varies between ambient and 2500 K while the liquid temperature
is fixed near the boiling temperature, the viscosity ratio varies between 5 and 15. We study the
values 5, 10, and 15. It is somewhat inconsistent with our formulation to assume that the gas
temperature is much greater than the liquid temperature because we have neglected temperature
gradients, but by examining this range, we can bound the effect of viscosity ratio.
Results are obtained by fixing the Ohnesorge number and increasing the Weber number from a

small value, usually 0.1 or less, to a value around 10 in factors of 100:1–1:26. At Weber numbers
greater than 10, we approach the critical Weber number of break-up. In this paper, we are only
interested in the deformation and drag response and will not study the break-up limits. For fixed
fluid properties, Oh only varies with drop diameter, thus increasing the Weber number with Oh
held constant corresponds to an experiment in which drops of a fixed size are driven through a
flow at increasing velocities.
The smallest Ohnesorge number for which we can study deformation is determined by the

axisymmetric assumption. From simulations of flow over a solid sphere, we know that at a
Reynolds number, Re ¼ qGUd=lG, of around 200 the flow becomes non-axisymmetric (Johnson
and Patel, 1999). Since high-viscosity-ratio liquid drops behave similarly to solid spheres, we
expect a similar transition. Expressing Oh as

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qG=qL

p
ðlL=lGÞ

ffiffiffiffiffiffi
We

p
=Re, we see that, for a fixed

Weber number and given fluid properties, the smallest Oh is determined by the maximum Rey-
nolds number. In obtaining the results for given values of qL=qG and lL=lG, the smallest Oh is
chosen such that at We ¼ 1, Re � 200. Oh is increased from this value by factors of 100:2–1:58 over
two to three orders of magnitude. At the largest values of Oh the Reynolds number is then
Oð10�1Þ. Table 1 summarizes the range of conditions studied.

4. Time scale analysis

To determine the conditions under which the steady response of a drop to an applied body
force is representative of injected drops, we analyze the time scales in the problem. If the velocity
decay rate of the drop is small relative to its deformation response rate, the velocity decay will not
be important in determining the drop shape. Physically, this means that the drop will respond in a

Table 1

Simulation conditions

qL=qG lL=lG Ohmin Ohmax

5 5 0.01 6.3

5 10 0.05 12.6

5 15 0.05 20.0

50 5 0.005 3.15

50 10 0.01 6.3

50 15 0.01 6.3

500 5 0.00063 0.4

500 10 0.001 0.63

500 15 0.008 2.0

Oh increases by factors of 100:2. At each Oh, We increases from 0.1 by factors of 100:1.
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quasi-steady manner to the instantaneous relative velocity between the drop and the gas even
though this velocity is changing with time.
The velocity decay rate of the center of mass of the drop can be estimated assuming that the

drag on the drop is similar to that on a solid sphere. Using the Stokes drag law, CD ¼ 24=Re,
where CD is the coefficient of drag given by 8D=ðqGU 2pd2Þ with D being the magnitude of the drag
force, we arrive at an exponential decay rate for the drop velocity of 18ðqG=pLÞmG=d2 where mG is
the kinematic viscosity of the gas.
Estimates the of deformation rates of an isolated liquid drop can be found in Lamb (1945),

Subramanyam (1969), Miller and Scriven (1968) among others. When the Ohnesorge number is
much less than one, the drops are under damped, and the oscillation decay rate is given by
20mL=d2 (Miller and Scriven, 1968). If we divide this by the velocity decay rate of a drop in a gas
we arrive at 10/9 ðlL=lGÞ. Thus, under damped drops will respond in a quasi-steady manner to the
flow if the liquid-to-gas viscosity ratio is large. For the conditions we are studying, this is a
reasonable leading order approximation.
When the Ohnesorge number is much greater than one, the drops are over damped and the

deformation rate can be estimated as 40r=ð19dlLÞ (Miller and Scriven, 1968). Dividing by the
velocity decay rate, we arrive at the ratio 20=ð171Oh2Þ lL=lG. Thus, when the Ohnesorge number
is of order

ffiffiffiffiffiffiffiffiffiffiffiffiffi
lL=lG

p
, the quasi-steady approximation breaks down. In this limit, our simulations

will only be relevant to falling liquid drops and not to injected drops. Under these conditions,
drop-tower and shock-tube experimental results will also be significantly different.
In addition to the relaxation of the drop shape, it is also important that the drop�s internal

circulation equilibrate rapidly relative to the velocity decay rate of the center of mass. A simple
estimate of the characteristic rate associated with diffusion of momentum into the drop is given by
mL=d2. Comparing this to the exponential decay rate for the drop velocity, we arrive at lL=lG.
Thus, as long as the liquid-to-gas viscosity ratio is large, the flow in the interior of the drop will
respond in a quasi-steady manner to the gas flow velocity.

5. Numerical method

The numerical method we use to perform the calculations is an arbitrary-Lagrangian–Eulerian
(ALE) mesh movement scheme with an unstructured mesh. The governing equations are dis-
cretized using a spectral/hp finite element approach. The combination of ALE and higher-order
elements results in higher-order spatial accuracy for interfacial problems. As we will show shortly,
this allows very accurate solutions to be obtained. Detailed information about the method is given
in Helenbrook (2001).
We note that there have been several minor changes made to the method described in Helen-

brook (2001) to allow improved calculations of quasi-steady drops. First, the ALE mesh move-
ment scheme used to deform the mesh with the liquid interface has been modified to produce
better quality meshes for two-fluid problems. The new mesh-movement method is described in
Helenbrook (in press). Second, the iterative method used to determine the final position of the
interface has been modified to be more efficient over a wider range of conditions. This will be
described in a forthcoming paper. Last, the iterative solution procedure was modified so that the
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body force required to hold a drop at specified flow conditions could be found as part of the
iteration process.
All of the results presented are calculated on a trapezoidal domain given by the r, z points

(0,�10), (0,15), (10,7.5), and (10,12.5) with the drop positioned at r, z ¼ ð0; 0Þ where the units are
drop diameters. This is shown in Fig. 1 which is a typical element mesh used for the calculations.
At the lower boundary of the domain an inflow condition is enforced with a dimensionless ve-
locity of unity. At the right and upper boundaries, a zero-stress condition is enforced. At the
center line axisymmetric conditions are enforced.
To validate the method, we perform calculations of flow over a solid sphere and a liquid drop.

These validation results have previously been presented in Helenbrook (2001). Table 2 shows the

Fig. 1. Typical element mesh used for drop calculations with an insert of the region around the drop. The units of both

coordinates are drop diameters.

Table 2

Convergence results for CD

N P ¼ 1 P ¼ 2 P ¼ 4

17 1.02453 1.12223 1.15807

33 1.05333 1.09602 1.09065

65 1.07068 1.09196 1.09127

129 – – 1.09129
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results obtained for the coefficient of drag on a solid sphere, CD, at a Reynolds number of 100. In
the table, N is the number of polynomial basis functions on the surface of the sphere (a measure of
the numerical resolution) and P is the polynomial degree of the basis (a measure of the order of
accuracy). The most accurate result is when N ¼ 129 and P ¼ 4. The results presented in this
paper are calculated using the mesh shown in Fig. 1 and a polynomial degree of 2. This corres-
ponds to the conditions N ¼ 33 and P ¼ 2. Because we are using quadratic polynomials on each
element, the flow resolution is double that implied by the element mesh. Comparing the drag
result for N ¼ 33 and P ¼ 2 to the result at N ¼ 129 and P ¼ 4, we see that there is a 0.4% change.
Thus, the drag results should be accurate to within 1%. The drag result determined from the
experimentally derived correlation of Clift et al. (1978) for Re ¼ 100, is 1.087 which is within 0.4%
of this result. (The experimental uncertainty is not given.)
To determine the influence of the boundary conditions, we perform a simulation with the

downstream boundary between ð0; 21Þ and ð14:5; 13:8Þ and the upstream boundary between (0,
�14) and (14.5, �6.7). The simulation is performed with N ¼ 129 and P ¼ 4 so that the effects of
the boundary position are isolated from the spatial discretization error. The resulting CD is
1.08956 which is a change of 0.2%. Thus, the error associated with the proximity of the far-field
boundary conditions should also be less than 1%.
To check the accuracy for liquid drop calculations, we perform a convergence test for a quasi-

steady deformed drop. The conditions are qL=qG ¼ 100 and lL=lG ¼ 100. The body force on the
drop is determined as part of the iterative process such that the terminal Reynolds number based
on the gas properties is 60. The terminal Weber number of the drop is 4.0. This case was pre-
viously calculated by Dandy and Leal (1989). On a mesh given by N ¼ 33 and P ¼ 2 which is
typical for the results presented here, the drag is 1.713. On a mesh with N ¼ 65 and P ¼ 4, the
drag is 1.702 which is a 0.6% change. Both results are within 3% of the drag value calculated by
Dandy and Leal (1989) (which is less accurate). The calculated streamwise length of the drop was
0.768495 diameters (an oblate drop) versus 0.768452 on the finer mesh; a change of 0.005%.

6. Deformation response

We begin the analysis by categorizing the drop deformation response. Figs. 2–4 show extreme
examples of the three most prevalent drop shapes: oblate, prolate, and dimpled. The left half of
the figures show the gas-phase pressure. The right half of the figures show the streamlines. We
note that in some cases, the streamlines get closer together in regions in which one would expect
slower velocities. This seems to contradict conservation of mass. (The distance between the gas-
phase streamline closest to r ¼ 0 and the streamline defined by r ¼ 0 and the drop surface is an
example.) This is because the results are axisymmetric. As the streamlines move to larger r for a
constant flow velocity they get closer together because of the 2pr area weighting.
Fig. 2 shows an oblate drop. This is typically what one expects based on knowledge of flow over

a sphere. For gas flow over a sphere, there is a high-pressure zone at the leading and trailing edges
and a low pressure zone near the equator. This can be seen in the figure. The peak pressure is at
the leading edge with the minimum pressure on the equator and some pressure recovery at the rear
of the drop. This pressure distribution tends to collapse the drop and cause the oblate shape
shown in the figure.
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Shown in the same figure is a large, separated recirculation zone in the gas at the rear of the
drop. The appearance of a recirculation zone is primarily dependent on the Reynolds number of
the calculation and is not limited strictly to the oblate drops; recirculation zones are also observed
for prolate drops although they are less likely to form because of the streamlined shape. Calcu-
lations and experiments of flow over solid spheres have shown that a detectable recirculation zone
appears at a Reynolds number of around 20 (Clift et al., 1978; Johnson and Patel, 1999). For
drops, we find significant deviations from this result, depending on the liquid parameters. See
Dandy and Leal (1989) for more information on the behavior of the recirculation zones.
Fig. 3 shows a prolate shape. This shape is opposite what one would expect based on the logic

given above. The reason is that, as will be shown shortly, the deformation is caused by the liquid
circulation rather than the gas flow. The recirculation pattern in the liquid (shown by the liquid-
phase streamlines) causes high pressures in the interior of the drop at the leading and trailing
edges. This, in turn, causes the drop to become prolate.
Fig. 4 shows a dimpled shape. This shape is defined by a concave region at the rear of the drop.

In the figure, it appears as though there is a sharp corner at the rear of the drop, but this is because
the radius of curvature in the dimple is 1/100 the radius of the drop. To resolve this curvature, the
mesh resolution is much finer at the rear of the drop than that shown in Fig. 1. The gas-phase
pressure in the region of the dimple is high as shown by the steep pressure gradients leading
towards the dimple. This high pressure helps balance the surface tension stresses caused by the
curvature in the dimple. We will show that this shape mainly occurs at low Reynolds numbers. In

Fig. 2. Drop shape and dynamic pressure contours (left) and streamlines (right) for qL=qG ¼ 5, lL=lG ¼ 10, We ¼ 10,

and Oh ¼ 0:13 (Re ¼ 110). Pressure contours from leading stagnation point to minimum: 0.5 to �0.5 by �0.1.
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most of the cases calculated, the dimple is less sharp such that the drop cross-section has a kidney-
bean shape. Because the sharp dimple is such a peculiar shape, we have checked the result by
increasing the distance of the boundary conditions. Moving the boundary conditions to 50 dia-
meters, we find that the dimple actually becomes slightly sharper.

6.1. Oblate shapes

Of the above shapes, the prolate and oblate shapes are observed most frequently. We begin by
determining the conditions that lead to the oblate shapes. Even for the rather extreme prolate and
oblate examples shown in Figs. 2 and 3, the drop shapes remain fairly ellipsoidal. Excluding the
dimpled shapes, only at Weber numbers larger than 10 is there significant deviation from ellip-
soidal. Because of this, we use a single parameter, namely the aspect ratio, to describe the de-
formation. The aspect ratio E is defined as the ratio of the centerline height of the drop to the
equatorial diameter.
We are interested in understanding and modeling how the drop shape changes as a function of

conditions. To determine this, Fig. 5 shows one minus the aspect ratio for all of the cases cal-
culated with an oblate shape. Since the drops are oblate, E is less than one and this is a positive
number. Each curve on the figure corresponds to a calculation of increasing We at constant
qL=qG, lL=lG, and Oh. The maximum We calculated for each curve is determined by several

Fig. 3. Drop shape and gas-phase dynamic pressure contours (left) and streamlines (right) for qL=qG ¼ 500, lL=lG ¼ 5,

We ¼ 5:0, and Oh ¼ 0:04 (Re ¼ 13). Pressure contours from leading stagnation point to trailing minimum: 0.8 to �0.2
by �0.1.
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different constraints. As discussed previously, for the small Oh cases, increasing the Weber
number much past 1 causes the Reynolds number to exceed 200. For any constant Oh curve, if the
Reynolds number exceeds 200 no further cases are calculated. For the larger Oh cases, there are
two possible reasons for not going to higherWe. The first is that we approach the critical Weber
number of break-up beyond which there are no stable, steady solutions. The second is that the
mesh becomes highly deformed such that a new mesh must be generated. This often occurs for the
dimpled cases because of the high curvature in the dimple. In a few cases, we generate new meshes,
but it is too time consuming to individually create new meshes for all of the different cases. We are
currently working on an mesh adaptation algorithm to do this automatically.
We will not try to distinguish between the many curves on the figure but simply make some

general observations. First, we notice that many of the cases seem to follow a similar power-law
dependence onWe. With increasingWe, the drops become more oblate with a dependency which
looks like 1� E � We0:82. This line is shown on the figure for reference. The curves which branch
off from this behavior towards negative values are cases that transition from an oblate to prolate
shape. Based on the above discussion, we expect that the cause of this is pressure variation in the
liquid. A simple estimate of the magnitude of these pressure variations can be obtained from
the Hadamard–Rybczynski (H–R) solution for Stokes flow over a drop (Clift et al., 1978). The
magnitude of the liquid velocity, UL, is given by U=ð2þ lL=lGÞ � UlG=lL from which we
can estimate the pressure variations due to convection as qLðUlG=lLÞ

2
(From the H–R solution,

we know that the pressure variations caused by the viscous forces do not lead to deformation).

Fig. 4. Drop shape and dynamic pressure contours (left) and streamlines (right) for qL=qG ¼ 50, lL=lG ¼ 15, We ¼ 5:5,
and Oh ¼ 1:0 (Re ¼ 5). Pressure contours from leading stagnation point to minimum: 1.0 to �0.7 by �0.1.
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Although the velocity estimate is obtained from a Stokes flow solution, it does give a qualita-
tive understanding of our results; cases with large density ratios and small viscosity ratios are
more likely to be prolate. The curves that branch off correspond to conditions of ðqL=qG;
lL=lGÞ ¼ ð500; 15Þ, ð500; 10Þ, ð50; 10Þ, and ð50; 5Þ. The largest density ratio and smallest viscosity
ratio case (500,5) does not appear on the plot because all of the calculated points are prolate. This
is consistent with this rough argument. We will examine the prolate cases in more detail in the
following section.
Excluding the cases which transition to prolate, most of the results fall in a fairly narrow band

around the curve 1� E ¼ 0:11We0:82. There is little variation with liquid properties between
the cases ð5; 5Þ, ð5; 10Þ, ð5; 15Þ, ð50; 15Þ because the deformation is mainly determined by the gas
flow. There is, however, some weak sensitivity to the Ohnesorge number. The case ðqL=qG;
lL=lGÞ ¼ ð5; 15Þ (which should have the least dependence on the liquid flow characteristics) varies
from ð1� EÞ ¼ 0:078 to 0.13 at We ¼ 1 with Oh changing more than two orders of magnitude
from 0.05 to 8.0. The most oblate drops correspond to those with the largest Oh.
It is interesting to note that since the Reynolds number is inversely proportional to the

Ohnesorge number, ðRe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
qG=qL

p
ðlL=lGÞ

ffiffiffiffiffiffi
We

p
=OhÞ, at constantWe the most oblate drops have

the smallest Reynolds number. This is somewhat counter intuitive since the H–R solution says
there should be no deformation in a zero Reynolds number flow. However, the zero Reynolds
number assumption in the H–R solution means that there are no convective effects and thus
the analysis is also restricted to zero Weber number. When there is a finite Weber number, the

Fig. 5. Drop deformation for oblate drops. Conditions are listed in Table 1.
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numerical results show that gas-phase viscous effects amplify the effects of convection in causing
deformation.

6.2. Prolate shapes

The prolate shapes are caused by convection in the liquid. To isolate the deformation caused by
the liquid from that caused by the gas, in Fig. 6, we plot E � ð1� 0:11We0:82Þ. This number is
positive when the drops are elongated from the state we roughly expect based on gas-phase de-
formation alone. We only show the cases ðqL=qG; lL=lGÞ ¼ ð500; 5Þ, ð500; 10Þ, and ð50; 5Þ which
are the cases that have the highest tendency to become prolate. Only every other Oh curve is
shown to make the curves more visible. (Oh increases by a factor of 100:4.) Much below 10�2 the
results become meaningless because the deviation is smaller than the error in the simple curve fit
to the gas-phase results.
Examining the figure, we see that deformation due to the liquid phase again follows a power-

law dependence on the Weber number. In this case, the power is approximately 1.1 which is shown
on the figure for reference. The dependence on the Weber number is greater than that for the
oblate cases. This results in the transition seen in Fig. 5 between oblate at lowWe and prolate at
higher Weber numbers. We also see that there is a much stronger dependence on the liquid

Fig. 6. Prolate drop deformation. Dash-dot lines: ðqL=qG; lL=lGÞ ¼ ð500; 5Þ, Oh ¼ 0:00063–0:4. Solid lines: ð500; 10Þ,
Oh ¼ 0:001–0:63. Dashed lines: ð50; 5Þ, Oh ¼ 0:005–0.5. Oh curves increase by factors of 100:4.
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properties and the Ohnesorge number for the prolate cases. The dependence on the liquid
properties is expected based on the arguments given previously for the magnitude of the pressure
variations in the liquid.
To quantify the dependency of the deformation on the Ohnesorge number, we divide the result

shown in Fig. 6 by We1:1 to eliminate the Weber number dependence and replot the results versus
the Ohnesorge number. This is shown in Fig. 7. In this case, each curve of constant qL=qG;lL=lG
and Oh at varying Weber number is a vertical line. If we do a good job eliminating the dependence
on We, we should get nearly a point for each curve. As was the case previously, the scatter in-
creases at lower values of the deformation. There is also increased scatter for larger values of Oh
because, as we will show in the next section, the drops become dimpled under these conditions.
The five cases which exhibit prolate shapes are shown, ðqL=qGÞ ¼ ð500; 5Þ, ð500; 10Þ, ð500; 15Þ,
ð50; 5Þ, ð50; 10Þ, and ð5; 5Þ. From the figure we can see that dependence on the Ohnesorge number
can be modeled as Oh�0:55. Thus when the fluid properties are held fixed, smaller Ohnesorge
numbers (larger drops) have a greater tendency to become prolate.
To finish the modeling of the deformation caused by the liquid phase, we need to determine the

dependence on the liquid properties. Based on the ratio of the convective effects in the gas to the
surface tension stress, qLU

2
l d=r � qL=qGðlG=lLÞ

2We, we expect that the parameter qL=qGðlG=
lLÞ

2
will be important. Going through the process of eliminating the Oh dependence and plotting

Fig. 7. Prolate drop deformation dependence on Oh. ðqL=qG; lL=lGÞ values: ð.Þ ð500; 5Þ; ðDÞ ð500; 10Þ; ð�Þ ð500; 15Þ;
ð/Þ ð50; 5Þ; ðrÞ ð50; 10Þ.
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the results versus this parameter, we find that there is again a good collapse of the data. A cor-
relation predicting the deformation can then be determined to be

E ¼ 1� 0:11We0:82 þ 0:013
ffiffiffiffiffiffi
qL
qG

r
lG
lL

Oh0:55We1:1 ð1Þ

which shows the dependence on the liquid-phase parameters. This dependence is as expected;
increased liquid density and decreased viscosity result in a more prolate drop shape. We note that
there have been several previous attempts to model the drop shape response such as those by
Taylor and Acrivos (1964), Clift et al. (1978), and Grace and Wairegi (1992), but none of these
models give quantitative results for the range of conditions studied here nor do they predict the
dependence on the liquid parameters seen in our calculations.
To validate this correlation, Figs. 8 and 9 show the calculated aspect ratio of the drops as a

function of Weber number for qL=qG;lL=lG ¼ ð500; 5Þ and ð5; 15Þ respectively. In the first case,
the deformation is primarily determined by the liquid phase while in the second it is determined by
the gas phase. Oh increases crossing curves moving from the top to the bottom of the plots. The
Oh range for each figure is given in the captions. The solid lines on the figures are the computed
results and the dashed lines are the algebraic correlation. For all of the cases we have calculated,
the agreement between the correlation and the computed results is as good or better than that
shown in these two figures. For the prolate case shown, there is deviation at large Oh, but this is

Fig. 8. Drop deformation for qL=qG ¼ 500, lL=lG ¼ 5, and Oh ¼ 0:00063–0.40 (0:00063
 102:8) by factors of 100:2.
Solid lines–numerical results, dashed lines–correlation.
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not consistent across all of the cases. As expected, the oblate cases do not capture the weak
variation in deformation with Oh.
Examining Fig. 8, we see solutions with aspect ratios approaching two. This leads us to

question the validity of the axisymmetric assumption. Simple experiments with falling solid el-
lipsoids have shown that ellipsoids tend to align themselves with the largest cross-sectional area
normal to the flow (Clift et al., 1978). Thus, we suspect that the prolate cases are not axisym-
metrically stable but rather will tumble in a three-dimensional fashion as they move through the
gas. This may explain why prolate falling drops have never been reported even in uncontaminated
experiments while wobbling or oscillating drops have been reported (Clift et al., 1978; Hsiang and
Faeth, 1992).
To determine an expression for the onset of this proposed tumbling instability, we set E ¼ 1 in

Eq. (1) and substitute the relation for the Weber number as a function of Oh and Re.

Re � 70
qG
qL

� �3=2 lL
lG

� �3

ð2Þ

To obtain this result, in Eq. (1) we change the power of the Oh term to �0.5, and the difference
in the power of the two Weber number terms is rounded to 0.25. This equation predicts that for a
given set of fluid properties, the crossover point from oblate to prolate is at a fixed Reynolds
number. To verify this, in Fig. 10 we plot the results for qL=qG ¼ 500 and lL=lG ¼ 15 with the
Reynolds number on the horizontal axis. The figure confirms that the oblate to prolate transition

Fig. 9. Drop deformation for qL=qG ¼ 5, lL=lG ¼ 15, and Oh ¼ 0:05–20 (0:05
 102:6) by factors of 100:2. Solid lines–
numerical results, dashed lines–correlation.
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occurs at a fixed Reynolds number. The above equation predicts that transition will occur at
Re ¼ 21 while in the figure the crossover is near Re ¼ 15. If we examine the other cases which
transition from oblate to prolate, we find that the crossover again occurs at a single Reynolds
number. For ðqL=qG; lL=lGÞ ¼ ð50; 5Þ, ð50; 10Þ, ð500; 10Þ, and ð500; 15Þ the crossover occurs at
Re ¼ 25, 130, 4.8, and 15 respectively while the above equation predicts 25, 196, 6.2, and 21.
Experimental results on an oscillatory drop regime usually predict the transition as a line of

constant Weber number rather than constant Reynolds number (Hsiang and Faeth, 1992). This
may be because the shape oscillations only become noticeable when the Weber number is fairly
large. Another difference is that the transition is predicted to exist independent of the liquid and
gas fluid properties. This does not agree with our predictions. This may be because three-
dimensional perturbations which are always present in an experiment obscure the transition. An-
other possibility is that surface contaminants may be affecting the experiment. There is evidence
that surface contaminants tend to reduce the magnitude of internal circulation in a drop (Clift
et al., 1978). This will reduce the tendency for drops to become prolate and thus either eliminate
or alter the conditions which cause a transition to oscillation. We have performed some prelim-
inary calculations with a contaminant model and found that the internal circulation pattern is
radically different. In some cases, this causes the drop shape to change from prolate when un-
contaminated to oblate when contaminated. Thus, the three-dimensional instability may be only
observable in contaminant-free experiments.
It has been suggested that contaminated drops can be modeled as a drop with zero internal

circulation (Haywood et al., 1994). If this is true, then the low-density-ratio, high-viscosity-ratio

Fig. 10. Drop deformation for qL=qG ¼ 500, lL=lG ¼ 15, and Oh ¼ 0:008–2.0 (0:008
 102:0) by factors of 100:2.
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results should behave similarly to contaminated drops. In this case, we can neglect the defor-
mation caused by the liquid. In Eq. (1), we then only have a dependence on the Weber number
and a very simple model for deformation. The accuracy of this approximation needs to be de-
termined, however it does give a rough estimate of the possible effects of contaminants on de-
formation.

6.3. Dimpled shapes

The dimpling phenomenon is primarily due to gas-phase viscous effects and occurs when the
Capillary number, Ca ¼ lGU=r ¼ We=Re is Oð1Þ or larger. To confirm this, in Fig. 11 we plot the
Capillary number versus Ohnesorge number of all the points that have a dimpled shape with a
dark symbol. For reference, the gray background area is the domain over which we have per-
formed calculations. A line of constant Weber number is also shown on the plot, this is deter-
mined by Ca ¼

ffiffiffiffiffiffi
We

p
OhðlG=lLÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qL=qG

p
. The equation for the line is actually Ca ¼ 30Oh. The

actual value of the Weber number on the line depends on the gas and liquid properties. There are
no calculations above this line because these conditions exceed the critical Weber number for
breakup. The first thing we see from this figure is that the dimpled shapes occur when the Capillary
number is Oð1Þ in magnitude. If we examine each density and viscosity ratio case separately, we
find that, independent of the liquid properties, all of the cases show dimpling when Ca is Oð1Þ
except for qL=qG ¼ 500, lL=lG ¼ 5 which never becomes dimpled. Thus, the liquid properties are

Fig. 11. Capillary number of drops with dimpled shape. Density, viscosity ratio: ðrÞ 5; 15; ð}Þ 50; 15; ðþÞ 500; 15;
ðDÞ 5; 10; ð/Þ 50; 10; ð�Þ 500; 10; ð
Þ 5; 5; ð.Þ 50; 5; None 500; 5.
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not a primary factor in the appearance of dimpling. This confirms our original statement that the
phenomenon is due to gas-phase viscous effects.
Although dimpling is primarily a gas-phase effect, there is a sensitivity to the liquid parameters.

In the figure, there are two distinct trends in the appearance of dimpling: one showing Ca � 1 over
a range of Oh, and the other showing an increase in Ca number from 0.1 to 1.0 with Oh. The first
trend occurs for the cases, ðqL=qG;lL=lGÞ ¼ ð500; 15Þ, ð500; 10Þ, and ð50; 5Þ. We also include the
case ð500; 5Þ which does not develop dimpled shapes in this group. For these conditions, the liquid
circulation has a strong effect on the deformation. This causes the drops to become prolate which
increases the curvature at the rear of the drop and opposes dimpling. Because of this, the Capillary
number must be approximately one, independent of Oh, for dimpling to occur. The remaining
cases tend to become oblate with increasing Weber number. This flattens the back of the drop and
makes it easier for a concave region at the rear of the drop to form. For these cases, the Capillary
number at which dimpling occurs increases with Oh from 0.1 to 1.0.
Although dimpling occurs when Ca is Oð1Þ in the above results, we know from the H–R so-

lution that if convective effects are ignored completely a spherical drop does not deform at any
Capillary number. Thus, the dimpling effect must be a combined effect of both convection and
diffusion. In the limit of low Reynolds numbers, we expect the onset of dimpling to be somewhere
between the lines Ca ¼ Oð1Þ and We ¼ Oð1Þ. This is in agreement with our previous conclusion
that gas-phase viscosity tends to increase the drop deformation. Both of the trends shown fall
between the two limits We ¼ Oð1Þ and Ca ¼ Oð1Þ, however because the lowest Reynolds number
for any of the cases is 0.1, the results cannot be used to extrapolate to the low Reynolds number
limit.
Performing calculations at Reynolds numbers lower than 0.1, we find that there is a strong

dependence of the deformation on the position and type of far-field boundary conditions used.
Moving the boundaries to 25 diameters does not eliminate this dependence. Since high Capillary
number drops do not occur in most spray devices, we do not pursue this limit further. We note
that the prediction that deformation will occur between Ca ¼ Oð1Þ and We ¼ Oð1Þ is in agreement
with analytic predictions in this limit. Examining the analytic solution of Taylor and Acrivos
(1964) which is a perturbation analysis for smallWe and Re, we see that they predict deformation
to be of the form

E ¼ 1þ f ðlL=lG;qL=qGÞWeþ gðlL=lG;qL=qGÞWeCa ð3Þ

where f and g are algebraic functions. When the Capillary number is large, the last term dominates
and deformation occurs when WeCa is Oð1Þ. This falls between Ca ¼ Oð1Þ and We ¼ Oð1Þ.
Stokes flow calculations of viscous drops have shown that a perturbed spherical drop has a

tendency to form a sharp dimple at the rear of the drop (Stone, 1994). This further confirms that
this is a low Reynolds number effect. The Stokes flow calculations show drops with a narrow and
deep dimple at the rear. For large Oh values such as that shown in Fig. 4, we also find fairly
narrow dimples. For smaller values of Oh, our results have a broad dimple at the rear of the drop.
This transition is expected since decreasing Oh at constant Ca corresponds to a larger Reynolds
number flow. When Oh < ðlL=lGÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qG=qL

p
, the Capillary number is less than one when the Weber

number is one. Under these conditions, the drops are either prolate or oblate and do not dimple
because viscous effects are less significant.
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Another comment about dimpling is that, since the Ohnesorge must be Oð1Þ or larger for the
phenomenon to occur, dimpled shapes are more likely to be observed for falling drops than for
injected drops. As discussed in the time scale analysis section, when the Ohnesorge number is
large, the velocity of an injected drop decays more rapidly than the drop can deform. Thus, the
drop will not have time to reach its quasi-steady deformed state. Drops under a body force have
an infinite amount of time to deform and thus can evolve to a dimpled state.
The effect of dimpling can be seen in plots of aspect ratio versus Weber number such as Fig. 9.

For oblate cases, the large Oh curves decrease faster than the approximate 1� We0:82 correlation
near the higher Weber number end of the curves. This drop below the 1�We0:82 correlation curve
is caused by the formation of a dimple at the rear of the drop which decreases its centerline height.
Because the formation of a sharp dimple causes large mesh deformation, the calculations are not
continued much past the dimple�s initial formation.
From the above discussion, we have good confidence that we can estimate the drop shape given

the flow conditions. The deformation correlation given by Eq. (1) can be used to predict drop
shapes for conditions Oh < ðlL=lGÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qG=qL

p
with reasonable accuracy. Above this value the drop

shape will become dimpled which is not included in the correlation. The Weber number can range
from 0 to approximately 10. Above We ¼ 10, the drop approaches the critical value and it is
difficult to predict its behavior.

7. Drag

Given the deformation information, we now examine the drag response of a drop. The drag on
a viscous liquid drop is usually modeled by a drag law for a solid sphere. There are two effects
which can cause the liquid-drop drag to deviate from that of a solid sphere. These are internal
circulation and the deviation of the drop from a spherical shape. In the following, we examine
both of these effects.
In Figs. 12–14 we plot, as a function of Reynolds number, the percentage deviation in drag

from that of a solid sphere with the same volume. Figs. 12 and 13 are at the same density ratio,
5, but different viscosity ratios, 5 and 15. Fig. 14 is at the same viscosity ratio as Fig. 13, namely
15, but different density ratio, 500. The baseline solid-sphere drag at any Reynolds number is
calculated using the same gas-phase mesh and boundary conditions as used for the drop cal-
culations. Each solid curve corresponds to a constant Ohnesorge number calculation. The largest
Oh cases are at the left side of the plots. The initial point of each curve is at We ¼ 0:1 or less. The
Weber number increases quadratically with the Reynolds number along the curves. The scale
of the axis is the same for each plot although the origin is shifted vertically depending on the
case. The thick curve and the dashed curves are algebraic correlations which will be discussed
shortly.

7.1. Internal circulation

We begin by examining the effect of internal circulation on the drag. In the low Weber number
limit, the drop is spherical, and internal circulation is the primary cause for the change in the drag.
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For each constant Oh curve, the low Weber number limit is approximated by the lowest Reynolds
number points on the curve since We ¼ 0:1 or less for these points. Under these conditions, the
surface tension is an unimportant parameter since the drops are nearly spherical. The primary
parameters which can affect the drag are then qL=qG, lL=lG and Re. All of the numerical curves
on a single plot should collapse to a single curve at low Weber numbers. Examining the figures, we
see that this appears to be the general trend. If we were to start the calculations at lower We, this
trend would be even more apparent. This single curve represents the effects of internal circulation
on a spherical drop.
In the low Reynolds number limit, the H–R solution predicts that the percentage change is

�100=ð3þ 3lL=lGÞ. For the reader�s reference, the thick solid curves shown on the figure, which
will be described at the end of this section, reproduce this result in the low Reynolds number limit.
At low Reynolds and Weber number, the numerical curves should all converge to this analytic
result. Examining the figures at low Reynolds numbers, we see good agreement with the analytic
result with a maximum difference of less than 1/2 of a percent. This gives us further confidence in
the numerical results.
In the low Reynolds number limit, the density ratio should not have an effect on the drag

because the convective term is negligible; this is the only term in which the density appears.
Comparing the lowWe drag curves between Figs. 13 and 14 shows that this is true of our results
even at larger Reynolds numbers. To facilitate this comparison, note that the thick solid curves

Fig. 12. Drag deviation from a solid sphere for qL=qG ¼ 5, lL=lG ¼ 5, and Oh ¼ 0:01–6.3 (0:01
 102:8) by factors
of 100:4. Solid lines–numerical results, Thick solid line–internal circulation correlation, Dashed lines–total correla-

tion.
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are the same on both plots. From this we can say that the density ratio is not an important
parameter when modeling the effect of internal circulation on drag for Re up to 200.
The reason for this independence is given by Rivkind and Ryskin (1976). They explain that in

low Re flow, the liquid flow is a Hill�s spherical vortex (Hill, 1894) and that this is a solution of the
Navier–Stokes equations independent of the liquid-phase Reynolds number, ReL ¼ qLULd=lL.
Variations in qL are therefore irrelevant if the gas-phase Reynolds number is low. They are also
irrelevant if the liquid-phase Reynolds number is low because the liquid convective term is neg-
ligible. Re  1 and ReL  1 is then the only region in which the density ratio may have a strong
effect. Examining all of our results, for which in some cases ReL approaches 4000, we find that this
is not the case. Thus, the density ratio is unimportant when examining the effect of internal cir-
culation on drag. This conclusion has been made in several previous studies of the flow around
liquid drops with an assumed spherical shape (Rivkind and Ryskin, 1976; Oliver and Chung,
1987).
Although Hill�s spherical vortex is a solution to the Navier–Stokes equations at all Reynolds

numbers, the normal stress on the interior of the drop surface changes as a function of Reynolds
number. This is the reason that qL is important in determining the drop shape. For drag in the low
Weber number limit however, only the surface velocity distribution and tangential stresses are
important since the drop is constrained to be nearly spherical by the surface tension. These are
both independent of the liquid density.

Fig. 13. Drag deviation from a solid sphere for qL=qG ¼ 5, lL=lG ¼ 15, and Oh ¼ 0:05–12.6 (0:05
 102:4) by factors
of 100:4. Solid lines–numerical results, Thick solid line–internal circulation correlation, Dashed lines–total correla-

tion.
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The only parameters needed to model the effect of internal circulation are then Re and lL=lG.
Rivkind and Ryskin (1976) and Oliver and Chung (1987) have proposed algebraic correlations
which depend only on Re and lL=lG to describe the drag over a spherical liquid drop. We have
examined these correlations in relation to our numerical results. To analyze the behaviors, we
examine the percentage change in the drag from that given by the correlation for a solid sphere.
This isolates the internal circulation effect and makes the results less dependent on the actual
solid-sphere drag law used.
The correlation of Rivkind and Ryskin does not reproduce the Stokes flow result; as the

Reynolds number approaches zero, the error approaches infinity. In the range 20 < Re < 100,
which was suggested by Oliver and Chung for its use, we find that it produces qualitatively in-
correct results compared to our numerical results. The reason for this is probably that Oliver and
Chung only looked at the total drag rather than the percentage change in drag. Since the solid-
sphere drag correlation Rivkind and Ryskin used is fairly accurate in this range, their results
appear to be accurate. In fact, for most conditions the percent correction does not fall in the range
shown on Figs. 12–14.
The drag correlation proposed by Oliver and Chung (1987) is limited because the solid-sphere

drag correlation they used is only accurate for small Re. Modifying their correlation with a more
accurate solid sphere drag correlation, we find that the results predict the correct trends for Re up
to 100 and also agree with the analytic result for small Re. However, the decrease in drag at higher

Fig. 14. Drag deviation from a solid sphere for qL=qG ¼ 500, lL=lG ¼ 15, and Oh ¼ 0:008–2.0 (0:008
 102:4) by
factors of 100:4. Solid lines–numerical results, Thick solid line–internal circulation correlation, Dashed lines–total

correlation.
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Re shown in Figs. 12–14 is under predicted. This is probably because we are using the correlation
in a range outside of its intended use. Because of these limitations, we have created the following
correlation for the effect of internal circulation on drag

Ddrop

Dsolid

¼ 2þ 3lL=lG
3þ 3lL=lG

� �
ð1� 0:03ðlG=lLÞRe0:65Þ ð4Þ

where Ddrop and Dsolid are the drag forces on a spherical drop and a solid-sphere respectively. This
correlation defines the thick solid curves shown in Figs. 12–14. In the low Re limit, the above
correlation reproduces the analytic result. As can be seen from the figures, this correlation also
accurately predicts the effect of internal circulation at higher Reynolds number. Because only
three viscosity ratios are studied, the dependence of the coefficient of the Re term on viscosity ratio
is not well established and may be inaccurate on extrapolation to viscosity ratios outside this
range (especially lower viscosity ratios). At high-viscosity-ratios, the correction approaches unity
because internal circulation effects become negligible.

7.2. Deformation effect

To complete the modeling of drag for a liquid drop, we consider the effect of deformation. As
can be seen in the figures, the deviation of the drag from that of a liquid sphere follows the aspect
ratio of the drop. Prolate drops tend to show a decrease in the drag below the internal circulation
curve due to their decreased frontal area. For cases which transition from oblate to prolate such as
ðqL=qG;lL=lGÞ ¼ ð500; 15Þ the transition point in drag above and below the internal circulation
curve is approximately at a constant Re, consistent with Eq. (2). This can be seen in Fig. 14.
Oblate cases such as ðqL=qG; lL=lGÞ ¼ ð5; 5Þ and (5,15) (Figs. 12 and 13) show an increase in drag
due to their increased frontal area. The magnitude of these effects is not fully shown by the figures;
we have restricted the range of the vertical axis to 20% to show the details of the internal cir-
culation effect. The deviations due to deformation can be much larger. The maximum deviation
for the prolate cases occurs for qL=qG ¼ 500 and lL=lG ¼ 5 and is �35%. The maximum devi-
ation for the oblate cases occurs for qL=qG ¼ 5 and lL=lG ¼ 15 and is a 115% increase in the drag
force.
To model the effect of deformation on drag, we follow the procedure suggested by Clift et al.

(1978). First, the drag on a sphere of equivalent equatorial diameter to the drop is calculated using
a solid-sphere drag correlation. Assuming the drops are perfect ellipsoids, the equatorial dia-
meter is given by dE�1=3. The Reynolds number of the sphere with the equivalent equatorial dia-
meter, Reed, is then given by ReE�1=3. Using the definition of CD, we arrive at the following for the
drag

D ¼ 1

2
qGU

2AedCDed ¼
1

8
qGU

2pd2E�2=3CDed ð5Þ

where CDed is the coefficient of drag calculated from a solid sphere drag correlation at Reed. In the
second equation we have substituted pd2E�2=3=4 for Aed, the cross-sectional area of the ellipsoid.
This gives the drag for a sphere of equivalent equatorial diameter as the ellipsoid. To calculate the
drag on the ellipsoid, this drag force is then multiplied by the drag ratio between a sphere and an
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ellipsoid of the same equatorial diameter. There is no analytic expression for this valid at all
Reynolds numbers, however Clift et al. suggest that the low Reynolds number result can be used
over the entire range of Re. This is approximated by 0:2ð4þ EÞ which in Stokes flow is accurate to
within 6% for 0 < E < 2:0 (Clift et al., 1978). Multiplying by this expression gives us the drag on a
solid ellipsoid. To incorporate the effect of internal circulation in the drop, this drag is then
multiplied by the correction given in Eq. (4).
The dashed lines shown in Figs. 12–14 are calculated using the above procedure. The aspect

ratio is determined using Eq. (1). The baseline solid-sphere drag correlation used is given by

CD ¼ 24

Re
½1þ 0:1935Re0:6305� ð6Þ

which is the correlation suggested by Clift et al. (1978) to be appropriate for the range
206Re6 260. Because we plot the correction to the solid-sphere drag, the curves are fairly in-
sensitive to the exact form of the correlation.
The above drag modeling procedure does a reasonable job of predicting the dependence of the

drag on the aspect ratio. However, we do notice some consistent differences between the modeled
results and the numerical results for all of the cases. The first is that in the range 0:1 < Re < 5, the
drag model consistently over predicts the sensitivity of the drag to aspect ratio. This is unexpected
since in the low Reynolds number limit, the drag model should give better results. To determine
whether the cause of this inaccuracy is the prediction of the aspect ratio of the drop, we recalculate
the drag model curves using the aspect ratio determined directly from the simulations. The results
of these calculations are very similar to those based on the aspect ratio correlation. From this we
conclude that the over prediction is caused by the drag modeling not the aspect ratio correlation.
Further work is needed to determine the source of this inaccuracy.
Another consistent trend is that at higher Reynolds numbers, the drag sensitivity to defor-

mation is under predicted. However, as verified by recalculating the results using the numerically
determined aspect ratio, most of the under prediction is due to the drag model. Since we are
unsure of the source of the inaccuracy in the low Re limit, we will refrain from speculating on the
reasons for this under sensitivity in the high Re limit.
Overall, the drag model seems to provide an accurate prediction of drag on deforming liquid

drops. For most of the cases calculated, the correction is within 5% of the numerical values. For
highly deformed cases, the accuracy degrades slightly. For our most extreme case of drag increase,
qL=qG ¼ 5, lL=lG ¼ 15, the drag increases 115% and the model predicts an increase of 85%
which, although low, is still a reasonable prediction. The worst case is for qL=qG ¼ 5, lL=lG ¼ 5
shown in Fig. 12. For the curve that reaches the top of the figure at Re ¼ 100, the maximum
drag increase is 50%. The model under predicts this significantly because of the combined facts
that the deformation is under predicted and the drag sensitivity to the deformation is also under
predicted.
An alternative to the above model is a drag correlation developed by Haywood et al. (1994).

Their correlation is not based on the deformation but directly models the drag as a function of
Weber number and Reynolds number. This correlation is given by

D ¼ 1

8
qGU

2pd2CDsolidð1þ 0:06Re�0:12We1:4Þ ð7Þ
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The correlation was derived from simulations in which all liquid motion was suppressed, thus
this result will only be valid for conditions under which the liquid motion is unimportant. This
corresponds to conditions of high-viscosity-ratio and low density ratio. In Fig. 15, we compare
this to our numerical results for qL=qG ¼ 5, lL=lG ¼ 15. To improve the comparison, we have
modified the correlation by multiplying it by the internal circulation factor given in Eq. (4). This
correlation significantly over-predicts the sensitivity to the Weber number for small Reynolds
numbers. In the range 20 < Re < 200, the results become more accurate. The derivation of this
correlation was based on results at Re ¼ 10, 20, 50, and 100 so accuracy in this range is expected.
Because this correlation was derived assuming no liquid motion, it cannot be used to predict the
drag for cases in which the liquid motion is important.
Haywood et al. neglected the liquid velocity in order to approximate contaminated drops. If

this is a good approximation, our drag model can be used to predict contaminated drops by
neglecting the effect of internal circulation on drag and deformation. Whether this approximation
is accurate remains to be seen, but it does give an estimate of the possible effect of contaminants
on drag. For cases that are sensitive to the liquid properties, such as qL=qG ¼ 500, lL=lG ¼ 5,
contaminants could qualitatively and quantitatively change the results. For example, if we
eliminate the liquid velocity, the drops would change from prolate to oblate and the drag cor-
rection would change from positive to negative. This has actually been observed in some of our

Fig. 15. Comparison between numerical results and the drag correlation of Haywood et al. (1994) for qL=qG ¼ 5,

lL=lG ¼ 15, and Oh ¼ 0:05–12.6 (0:05
 102:4) by factors of 100:4. Solid lines–numerical results, Dashed lines–corre-
lation of Haywood et al. (1994).
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preliminary calculations with a contaminant model (Helenbrook and Edwards, 2000). Further
work is necessary to examine these effects in detail.

8. Conclusions

We have performed over 3000 simulations to categorize the deformation and drag behavior of
liquid drops. These simulations have been validated and give a precise picture of the drop defor-
mation and drag response. Examining the deformation response, we found that there are three
competing effects which determine the deformation of the drop. The first is a convective effect in the
gas phase which causes oblate drops. The second is a convective effect in the liquid phase which
causes prolate drops. The third is a combined effect of gas-phase viscous and convective forces.
This is only important in large Ohnesorge number cases and tends to cause dimpled shapes to form.
We have developed an algebraic correlation which incorporates the first two effects and predicts

the aspect ratio of the drop to within 10% (given the fluid properties, the drop volume, and the
drop velocity). From this correlation we were able to more clearly understand the deformation
properties of drops. For oblate cases, the primary parameter in predicting the aspect ratio is the
Weber number. For the prolate cases, the aspect ratio is dependent on all of the parameters in the
problem. Prolate cases are more likely to occur when the Ohnesorge number is small and
qL=qGðlG=lLÞ

2
is large.

From this correlation we derived a simple criterion for the transition between prolate and
oblate drops. This is an important transition because simple experiments with prolate ellipsoids
have shown that they tumble as they fall through a gas while oblate ellipsoids are stable. Thus, we
expect that when the drop transitions from prolate to oblate, a three-dimensional instability will
occur. Using this criterion, we can predict the onset of this instability.
The aspect ratio of the drop is an important parameter in that it is necessary for predicting

deformation corrections for mass, momentum, and heat transfer rates. We have used the aspect
ratio correlation to incorporate the effects of deformation in estimating the drag of a drop. By
combining the correlation with established results for the drag on an ellipsoid we were able to
estimate the drag on a deformed liquid drop within 5% for moderate deformation cases and
usually within 30% for high deformation cases in which the drag more than doubled relative to
that of a solid sphere at the same conditions.
As part of the drag modeling effort, we also examined the effect of internal circulation on the

drag of a spherical liquid drop. Several authors have examined this problem previously (Rivkind
and Ryskin, 1976; Oliver and Chung, 1987) but previous correlations were not adequate for
obtaining accurate results. For this reason, we created a new correlation for the effect of internal
circulation on the drag. This correlation should prove useful for problems in which the liquid-
to-gas viscosity ratio is greater than 5 and the Reynolds number is less than 200.
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